Round-Optimal Password-Protected Secret Sharing and T-PAKE in the Password-Only Model

Stanislaw Jarecki Aggelos Kiayias Hugo Krawczyk

How to Protect a Valuable Secret

When all You Remember is a

Password

A motivating example: Bitcoin Wallet

- Stealing Bitcoin wallets is common news: How would you protect it?
 - □ smartphone? lose the phone, lose the wallet; add laptop? 2 stealing targets
- Backup in Internet server: protection reduced to password

 \Box online attacks (works for weak passwords)

- □ offline server attacks: work even with reasonably secure passwords
- Obvious cryptographic solution: keep wallet encrypted in multiple locations; secret share the encryption key in multiple servers
 - □ But how do you authenticate to the servers? With a password, of course!
 - A strong independent password with each server? Not really
 - Same (or slight-variant) password for each server? Not good

→ Each server as a single point of failure! Didn't achieve much, did we?

Password Protected Secret Sharing [BJSL'11]

- Protection: User <u>secret shares</u> a secret among n servers (threshold t); forgets the secret and <u>keeps a single password</u>.
- Retrieval: User <u>contacts t + 1</u>, or more, servers, <u>authenticates using</u> <u>the single password</u> and reconstructs the secret.
- <u>Security guarantee</u>: Attacker that breaks into t servers and finds all their secret information (including shares, long-term keys, password file, etc.) cannot learn anything about the secret (and password).
- Only adversary hope: Guess the password, try it in an online attack.
- Offline attacks with less than t+1 corrupted servers are useless.
- + Soundness: User reconstructs the correct secret or else rejects.

PPSS: Security Definition

- As strong as possible: Only allows attacks that are unavoidable
- An attacker A can always test a guessed password p by one of:
 - A interacts (as a user) with t+1 servers using password p; if A's execution accepts then guess was correct
 - It takes online interactions with t+1 servers to test a single password
 - A simulates the sharing protocol with t+1 (imaginary) servers using password p and arbitrary secret s; then A interacts with U simulating the t+1 servers. If U accepts, the guess was correct.
 - Attacker controlling t+1 links to user can test a password
- Hence, if attacker controls t' servers and password chosen from D:

Adv_A
$$\leq$$
 ($q_{U} + \frac{q_{S}}{t-t'+1}$) $\cdot \frac{1}{|\mathsf{D}|} + \varepsilon$

More on our model

- Secure channels between user and servers assumed for initialization only (secret sharing phase)
- Reconstruction is in the CRS model (e.g., known EC group) no PKI or secure channels assumed, not even between servers

user only remembers its password !

- □ Hedging property: If PKI available b/w user and servers, attack 2 is not possible (attacker advantage: $\frac{q_{\cup}}{|D|} + \epsilon$)
- <u>Robustness</u>: If U can communicate without adversarial interference with t+1 servers, reconstruction succeeds (even if other links or participating servers are corrupted)

Comparison to Prior Work

- Bagherzandi-Jarecki-Saxena-Lu, CCS'11
 - □ Formalized PPSS notion as above (roots in also show a 4-msg std model.
 - Scheme <u>assumes PKI</u> between user and servers, needs 3 (or 4) messages,
 8t+7 exponentiations for client, 16 for each server
- Camenish-Lehmann-Lysyanskaya-Neven, Crypto'14:
 - □ UC notion of PPSS (called PASS)
 - no PKI b/w client and servers (except at init) , auth'd channels b/w servers
 - 10 msgs, 14t+24 exponentiations for client, 7t+28 for each server
- Our scheme (follows BJSL definition)
 - □ No PKI, no authenticated channels (except for initialization)

□ Single round (2)msgs), 2+3) expon's for client, 2) for e/server

All 3 protocols in ROM. We

From (t,n)-PPSS to (t,n)-threshold PAKE

- (t,n)-TPAKE: U can exchange keys securely w/ any subset of n servers using a single password as long as at most t servers are corrupted
 - $\hfill\square$ exchange succeeds if undisturbed communication with t + 1 servers
- We prove a <u>Generic composition theorem</u>: PPSS + KE → T-PAKE.
- With the following property:

Single-round PPSS → single round T-PAKE! (also w/PFS and PK KE)

→ First single-round T-PAKE:

no prior work achieved that, not even assuming PKI and not even for special cases such as 2-out-of-2 (ours is also the most computationally efficient)

投影片 8

A2 holds even with forward secrecy (Diffie-Hellman) and with single-round public-key based KE (e.g. HMQV).

The PPSS Scheme

Highlights of Our PPSS Scheme

- One round (User to Server msg + Server to User msg)
- User performs 2 exponentiations per server
 - Undisturbed communication with t+1 servers suffices for reconstruction (and wrong secret never reconstructed)
- Server performs 2 exponentiations
- No inter-server communication
- No assumed PKI or secure channels (other than for initialization)

Main building block: Oblivious PRF (OPRF) [NR'04,FIPR'05]

- Fastest (2 exp's/party) is Hashed-DH PRF: $f_k(x) = H(H(x)^k)$,
- Oblivious computation via "Blind DH Computation":

C sends a = $[H(x)]^r$ to S, S replies with b = a^k , C sets $f_k(x) = H(b^{1/r})$,

Idea of Scheme (w/o validation steps)

- Initialization: User U on password p (server S_i has OPRF key k_i)
 - \Box Chooses random s, secret shares s into s_1, \dots, s_n
 - □ Runs OPRF with server S_i , $1 \le i \le n$, to obtain $r_i = f_{ki}(p)$; encrypt s_i as $c_i = s_i \oplus r_i$

 \Box Stores c_i at S_i; erases all info; memorizes p.

Reconstruction: User U on password p

□ Receives c_i from S_i and runs OPRF to recover $r_i = f_{ki}(p)$; sets $s_i = c_i \oplus r_i$

 \square Reconstructs s from (subset of) s_1, \dots, s_n

For soundness: At initialization, U sets K||r= PRG(s), stores C=Commit(pw; r) at each server S_i. K is defined as the secret key for reconstruction.

At reconstr'n, U gets C from S_i, sets K||r= PRG(s); checks C = Commit(pw; r). If check succeeds U outputs K, else it rejects (can use any C that t+1 agree with)

Adding Validation

- Actual protocol uses "verifiable OPRF" where user can verify correct computation of f_k(p).
- For this, we assume S_i commits to its function f_{ki} via a descriptor π_i
- The commitment Commit(p; r) is augmented to Commit(p, c, π ; r) with $c = (c_1, ..., c_n), \pi = (\pi_1, ..., \pi_n)$, and values c and π are stored at each S_i
- U can try reconstruction on any subset of t+1 servers that agree on the values C, c and π . User accepts if commitment verifies correctly.
- For the DH-OPRF solution $f_{k_i}(x) = H(H(x)^{k_i})$, we set $\pi_i = g^{k_i}$ and add to the protocol a DDH NIZK.

□ In progress: Relax verifiability, get rid of NIZK (except for robustness)

PPSS Protocol (for DH OPRF)

Init: Server S_i has key k_i to OPRF $f_{k_i}(x) = H(H(x)^{k_i})$, denote $\pi_i = g^{k_i}$ User U (on password p and servers' functions $\pi_1, ..., \pi_n$)

 \Box Chooses random s, secret share s into s_1, \dots, s_n .

□ Runs OPRF with server S_i to obtain $r_i = f_{ki}(p)$; sets $c_i = s_i \oplus r_i$.

□ Defines $\mathbf{c} = (c_1, ..., c_n), \pi = (\pi_1, ..., \pi_n)$, and Com = Commit(p, c, π ; r) where K||r \leftarrow PRG(s); Stores at each server S_i: w = (c, π , Com).

□ K is defined as the recoverable key

- **Reconstruction:** For each S_i : receive w_i from S_i ; set w to majority w_i ; run OPRF to get $r_i = f_{ki}(p)$ (verify using π_i from w); set $s_i = c_i \oplus r_i$.
- Reconstructs from s_i's ; set K||r ← PRG(s); set C=Commit(p, c, π; r); reject if C differs from Com value in w, otherwise output K.

Defining "Verifiable OPRF"

- OPRF notion is intuitive: Secure two-party computation of f_k(x) where one party holds k and one holds x
- Yet, defining OPRF security is challenging:
 - E.g.: Secure 2-PC may impose input extraction, prevents concurrency, requires secure channels (all elements we want to avoid)
 - Indistinguishability definition tricky too: What's the test for the attacker after running q protocol executions (on unknown inputs)?
- We formulate a UC definition of "Verifiable OPRF" (user can check that the server uses same function consistently: e.g., always same output on pwd)
 - We bypass input extraction via ticketing mechanism
 - per-server ticket: increases with each server call, decreases with server output, no output from functionality if ticket = 0
- We show instantiations in ROM (DH, RSA), under one-more assumpt'n, and standard model (NR)

Comparison to Prior Work (PPSS and T-PAKE)

Achieving single-round password-only protocol in the CRS and ROM models for arbitrary (n, t) parameters with no PKI requirements for any party and no inter-server communi-

scheme	(t+1, n)	ROM/std	client	inter-server	\mathbf{msgs}	total comm.	comp. $\mathbf{C} \mid \mathbf{S}$
BJKS [2]	(2, 2)	ROM	PKI	PKI	7	O(1)	O(1)
KMTG [6]	(2, 2)	Std/ROM	CRS	sec.chan.	≥ 5	O(1)	O(1)
CLN [4]	(2, 2)	Std/ROM	CRS	PKI	8	O(1)	O(1)
DRG [5]	t < n/3	Std	CRS	sec.chan.	≥ 12	$O(n^3)$	$O(1) \mid O(n^2)$
MSJ [7]	any	ROM	PKI	PK1	7	$O(n^2)$	$O(1) \mid O(n)$
BJSL [1]	any	ROM	PKI	PKI	3	O(t)	$8t + 17 \mid 16$
CLLN [3]	any	ROM	CRS	PKI	10	$O(t^2)$	$14t \mid 24 \mid 7t \mid 28$
Our PPSS1	any	ROM	CRS	none	2	$O(t \log n)$	$2t+3 \mid 2$
Our PPSS2	any	Std	CRS	none	4	$O(\ell t \log n)$	$O(t\ell) \mid O(l)$

cation (except for server authentication at initialization).

